5.7 Nonhomogeneous Linear Systems

Given the nonhomogeneous first-order linear system

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t)
$$

where A is an $n \times n$ constant matrix and the "nonhomogeneous term" $\mathbf{f}(t)$ is a given continuous vectorvalued function.

A general solution of Eq (1) has the form

$$
\mathbf{x}(t)=\mathbf{x}_{c}(t)+\mathbf{x}_{p}(t)
$$

where

- $\mathbf{x}_{c}=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)$ is a general solution of the associated homogeneous system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$,
- $\mathbf{x}_{p}(t)$ is a single particular solution of the original nonhomogeneous system in (1).

Undetermined Coefficients
Example 1 Apply the method of undetermined coefficients to find a particular solution of the following system.

$$
\left\{\begin{array}{l}
x^{\prime}=x+2 y+3 \\
y^{\prime}=2 x+y-2
\end{array}\right.
$$

Ans: We assume $\left[\begin{array}{l}x_{p} \\ y_{p}\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$ for some numbers $a . b$.
Then we substitute x_{p}, y_{p} into the equs.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 0 = a + 2 b + 3 } \\
{ 0 = 2 a + b - 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a+2 b=-3 \Rightarrow 2 a+4 b=-6 \\
2 a+b=2
\end{array}\right.\right. \\
& \Rightarrow 3 b=-8 \Rightarrow b=-\frac{8}{3} \\
& a=-3-2 b=-3+2 \cdot \frac{8}{3}=-3+\frac{16}{3} \\
& =\frac{7}{3} \\
& \text { Thus }\left\{\begin{array}{l}
x_{p}=\frac{7}{3} \\
y_{p}=-\frac{8}{3}
\end{array}\right.
\end{aligned}
$$

Recall that if we want to find $x_{p}(t)$ for the equation $x^{\prime \prime}-x=e^{t}$, we assume $x_{p}=a t e^{t}$ since e^{t} is a solution for the homogeneous equation $x^{\prime \prime}-x=0$.

Similarly, in general cases, we need to check the solution for \mathbf{x}_{c} for the homogeneous equation $\mathbf{x}^{\prime}=\mathbf{A x}$.
For example,
Example 2 Apply the method of undetermined coefficients to find a particular solution of the following system. $\vec{x}^{\prime}=A \vec{x}+\vec{f}(t)$

$$
\begin{aligned}
& x^{\prime}=2 x+y+2 e^{t} \\
& y^{\prime}=x+2 y-3 e^{t}
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
2 \\
-3
\end{array}\right] e^{t}
$$

ANS: We first consider the homogeneous part

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& 0=|A-\lambda I|=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)=0 \\
& \lambda=1 \text { or } \lambda=3 .
\end{aligned}
$$

So $\vec{v}_{i} e^{t}$ appears in the solution for the homogeneous egn
So we assume.

$$
\left.\begin{array}{rl}
\vec{x}_{p}(t) & =\vec{a} e^{t}+\vec{b} t e^{t} \\
\uparrow & {\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]}
\end{array} \begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

We substitute $x_{p}, y_{p}, x_{p}{ }^{\prime}, y_{p}^{\prime}$ into the system. we get $\left\{\begin{array}{l}\left(a_{1}+b_{1}\right) e^{t}+b_{1} t e^{t}=\left(2 a_{1}+a_{2}\right) e^{t}+\left(2 b_{1}+b_{2}\right) t e^{t}+2 e^{t} \\ \left(a_{2}+b_{2}\right) e^{t}+b_{2} t e^{t}=\left(a_{1}+2 a_{2}\right) e^{t}+\left(b_{1}+2 b_{2}\right) t e^{t}-3 e^{t}\end{array}\right.$

Compare the coefficients for e^{t}, te e^{t}. we have

$$
\begin{aligned}
& \left\{\begin{array}{ll}
a_{1}+b_{1}-2 a_{1}-a_{2}-2=0 & \Rightarrow-a_{1}+b_{1}-a_{2}-2=0 \\
b_{1}-2 b_{1}-b_{2}=0 & \Rightarrow-b_{1}-b_{2}=0 \\
a_{2}+b_{2}-a_{1}-2 a_{2}+3=0 & \Rightarrow-a_{2}+b_{2}-a_{1}+3=0 \\
b_{2}-b_{1}-2 b_{2}=0 & \Rightarrow-b_{1}-b_{2}=0 \\
b_{2}=-\frac{5}{2}
\end{array} \quad \text { Then } \quad \overrightarrow{x_{p}}=a e^{t}+b t e^{t}\right. \\
& b_{1}=\frac{5}{2}
\end{aligned} \begin{cases}a_{1}=\frac{1}{2} & \Rightarrow\left\{\begin{array}{l}
x_{p}=\frac{1}{2} e^{t}+\frac{5}{2} t e^{t} \\
y_{2}=0
\end{array}\right. \\
\hline\end{cases}
$$

Example 3 Apply the method of undetermined coefficients to find a particular solution of the following system.

$$
\begin{gathered}
x^{\prime}=x-5 y+\cos 2 t \\
y^{\prime}=x-y
\end{gathered}
$$

$$
\begin{aligned}
\vec{x}^{\prime} & =A \vec{x}+\vec{f}(t) \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{rr}
1 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\cos 2 t \\
0
\end{array}\right]
\end{aligned}
$$

Ans: We first look at the corresponding homogeneous eqn.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& 0=|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & -5 \\
1 & -1-\lambda
\end{array}\right|=\lambda^{2}+4=0 \Rightarrow \lambda= \pm 2 i
\end{aligned}
$$

This means $\sin 2 t \& \cos 2 t$ appears in the solution for the homogeneous part
Use the method in $\$ 5.2$ we find

$$
\vec{x}_{c}=c_{1}\left[\begin{array}{c}
\cos 2 t-2 \sin 2 t \\
\cos 2 t
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \cos 2 t+\sin 2 t \\
\sin 2 t
\end{array}\right]
$$

We assume

The computation is quite long, so we list some of the result to save some time in our class. We have

$$
\begin{aligned}
& x_{p}^{\prime}=\left(2 a_{1}+d_{1}\right) \cos (2 t)+2 c_{1} t \cos (2 t)+\left(-2 b_{1}+c_{1}\right) \sin (2 t)-2 d_{1} t \sin (2 t) \\
& y_{p}^{\prime}=\left(2 a_{2}+d_{2}\right) \cos (2 t)+\left(-2 b_{2}+c_{2}\right) \sin (2 t)+2 c_{2} t \cos (2 t)-2 d_{2} t \sin (2 t)
\end{aligned}
$$

Compare the coefficients for $\sin (2 t), \cos (2 t), t \sin (2 t)$ and $t \cos (2 t)$ in the equations $x_{p}^{\prime}=x_{p}-5 y_{p}+\cos 2 t$ and $y_{p}^{\prime}=x_{p}-y_{p}$, we have the following 8 equations:

$$
\left\{\begin{array}{l}
2 c_{1}-d_{1}+5 d_{2}=0 \\
-1+2 a_{1}-b_{1}+5 b_{2}+d_{1}=0 \\
-a 1+5 a_{2}-2 b_{1}+c_{1}=0 \\
-c_{1}+5 c_{2}-2 d_{1}=0 \\
2 a_{2}-b_{1}+b_{2}+d_{2}=0 \\
2 c_{2}-d_{1}+d_{2}=0 \\
-a_{1}+a_{2}-2 b_{2}+c_{2}=0 \\
-c_{1}+c_{2}-2 d_{2}=0
\end{array}\right.
$$

We use calculator or computer to solve for these 8 variables, we find a solution
$a_{1}=\frac{1}{4}, c_{1}=\frac{1}{4}, c_{2}=\frac{1}{4}, d_{1}=\frac{1}{2}$ and $a_{2}=b_{2}=d_{2}=0$.
Thus $x_{p}(t)=\frac{1}{4}(\sin 2 t+2 t \cos 2 t+t \sin 2 t)$ and $y_{p}(t)=\frac{1}{4} t \sin 2 t$.

Using the Variation of Parameters discussed later in this section, we can use Matlab code to solve for this question. In Matlab, we writeUsing the Variation of Parameters discussed later in this section, we can use Matlab code to solve for this question. In Matlab, we write

```
% We first define variable s and t
syms t s
% We define the initial condition as follows
x0 = [0;0];
% The matrix A is given in the question
A = [1 -5; 1 -1];
% We define a column vector fs as the column vector function f(t)
% Note here we replace t with s
fs}=[\operatorname{cos(2.*s);0];
% We compute the definite integral in Eq(12) in our notes
integral = int(expm(-A.*s)*fs, 0, t);
% We compute x(t) using Eq(12)
solutiontoexample3 = simplify(expm(A.*t)*(x0 + integral))
```

After running the code we have the output

```
solution
    [1/4(t+1) sin (2 t)+ 1/2 cos (2 t) t]
    [ ]
    [ 1/4 sin (2 t) t ]
```


Variation of Parameters

We want to find a particular solution \mathbf{x}_{p} of the nonhomogeneous linear system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

given that we have already found a general solution

$$
\mathbf{x}_{c}=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

of the associated homogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}
$$

THEOREM 1 Variation of Parameters

If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the non- homogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by

$$
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t
$$

If $\mathbf{P}(t) \equiv \mathbf{A}$, we can use $\boldsymbol{\Phi}(t)=e^{\mathbf{A} t}=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1}$.
Then

$$
\mathbf{x}_{p}(t)=e^{\mathbf{A} t} \int e^{-\mathbf{A} s} \mathbf{f}(s) d s
$$

Consider the initial value problem

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Then the solution is given by

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+e^{\mathbf{A} t} \int_{0}^{t} e^{-\mathbf{A}(s)} \mathbf{f}(s) d s
$$

Note there were typos in our textbook for $\mathrm{Eq}(10)$ and $\mathrm{Eq}(12)$ on page 367.

Example 3 Given that $X_{1}(t)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $X_{2}(t)=\left[\begin{array}{c}2 t+1 \\ t\end{array}\right]$ are a pair of linearly independent solutions to the homogenous system

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Use the method of variation of parameters to solve the initial value problem

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
36 t^{2} \\
6 t
\end{array}\right] ; \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\vec{x}_{0}
$$

$\left.\begin{array}{rl}\text { Ans: We use the formula, } \vec{f}(t) \\ & \\ \\ \text { Since } \vec{x}(t)=e^{A t} \vec{x}_{0}+e^{A t} \int_{0}^{t} e^{-A(s)} f(s) d s \\ 0\end{array}\right], ~ l$

$$
\begin{aligned}
& \vec{\kappa}(t)=e^{A t} \int_{0}^{t} e^{-A(s)} f(s) d s \\
& \operatorname{Recall} e^{A t}=\Phi(t) \Phi(0) \\
& \Phi(t)=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 t+1 \\
1 & t
\end{array}\right] \\
& \Phi(0)=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] \Rightarrow \Phi^{-1}(0)=\frac{1}{2 \cdot 0-|x|}\left[\begin{array}{cc}
0 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right] \\
& \text { Thus } e^{A t}=\left[\begin{array}{cc}
2 & 2 t+1 \\
1 & t
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{cc}
2 t+1 & -4 t \\
t & 1-2 t
\end{array}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
& \vec{x}(t)=e^{A t} \int_{0}^{t} e^{-A s} f(s) d s \\
& =\left[\begin{array}{cc}
2 t+1 & -4 t \\
t & 1-2 t
\end{array}\right] \int_{0}^{t}\left[\begin{array}{cc}
2(-s)+1 & -4(-s) \\
-s & 1-2(-s)
\end{array}\right]\left[\begin{array}{c}
36 s^{2} \\
6 s
\end{array}\right] d s \\
& G=6 \int_{0}^{t}\left[\begin{array}{cc}
-2 s+1 & 4 s \\
-s & 1+2 s
\end{array}\right]\left[\begin{array}{c}
6 s^{2} \\
s
\end{array}\right] d s \\
& =6 \int_{0}^{t}\left[\begin{array}{c}
-12 s^{3}+10 s^{2} \\
-6 s^{3}+2 s^{2}+s
\end{array}\right] d s \\
& =6\left[\begin{array}{l}
{\left.\left[-\frac{12}{4} s^{4}+\frac{10}{3} s^{3}\right]\right|_{0} ^{t}} \\
{\left.\left[-\frac{6}{4} s^{4}+\frac{2}{3} s^{3}+\frac{1}{2} s^{7}\right]\right|_{0} ^{t}}
\end{array}\right] \\
& =\left[\begin{array}{l}
-18 t^{4}+20 t^{3} \\
-9 t^{4}+4 t^{3}+3 t^{2}
\end{array}\right] \\
& \vec{x}(t)=\left[\begin{array}{cc}
2 t+1 & -4 t \\
t & 1-2 t
\end{array}\right]\left[\begin{array}{l}
-18 t^{4}+20 t^{3} \\
-9 t^{4}+4 t^{3}+3 t^{2}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \vec{x}(t)=\left[\begin{array}{l}
8 t^{3}+6 t^{4} \\
3 t^{2}-2 t^{3}+3 t^{4}
\end{array}\right]
$$

Exercise 4 Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{c}
15 \\
4
\end{array}\right] t e^{-2 t}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
7 \\
3
\end{array}\right]
$$

The solutions are on page 368 of the textbook.

Example 5 In the following question, use the method of variation of parameters (and perhaps a computer algebra system) to solve the initial value problem

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t), \quad \mathbf{x}(a)=\mathbf{x}_{a}
$$

where $\mathbf{A}=\left[\begin{array}{ll}4 & -1 \\ 5 & -2\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{l}18 e^{2 t} \\ 30 e^{2 t}\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad e^{\mathbf{A} t}=\frac{1}{4}\left[\begin{array}{cc}-e^{-t}+5 e^{3 t} & e^{-t}-e^{3 t} \\ -5 e^{-t}+5 e^{3 t} & 5 e^{-t}-e^{3 t}\end{array}\right]$.

Ans: To solve this by hand, we need to follow the steps discussed in Example 3. We provide a computer code to solve this question.

In Matlab, we write the following code:

```
% We first define variable s and t
syms t s
% We define the initial condition as follows
x0 = [0;0];
% The matrix A is given in the question
A = [4 -1; 5 -2];
% We define a column vector fs as the column vector function f(t)
% Note here we replace t with s
fs = [18*exp(2*s); 30*exp(2*s)];
% We compute the definite integral in Eq(12) in our notes
integral = int(expm(-A.*s)*fs, 0, t);
% We compute x(t) using Eq(12)
solutiontoexample4 = simplify(expm(A.*t)*(x0 + integral))
```

After running the code, we get the following result

```
solution =
    [15 exp (3 t)-14 exp (2 t) - exp (-t)]
[
]
[15 exp (3 t) - 10 exp (2 t) - 5 exp (-t)]
```

Thus
$x_{1}(t)=e^{-t}\left(e^{3 t}\left(15 e^{t}-14\right)-1\right)$
$x_{2}(t)=e^{-t}\left(5 e^{3 t}\left(3 e^{t}-2\right)-5\right)$

